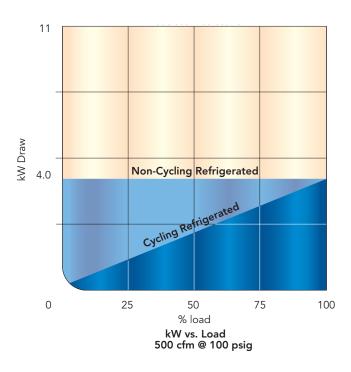


QUINCY QPCD SERIES | CYCLING
QUINCY QPNC SERIES | NON-CYCLING
QUINCY QPHT SERIES | HIGH TEMP

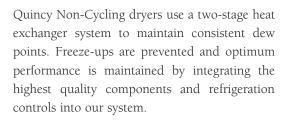
CYCLING AND NON-CYCLING DESIGNS FOR MAXIMUM SYSTEM EFFICIENCY

- Balanced refrigeration control systems provide reliable and consistent performance
- R-134a, R-404a and R-410a refrigerants ensure environmentally friendly operation
- User friendly control panels display operation data and instrumentation
- Cycling units 250 cfm and up creates total system versatility
- Application-specific heat exchangers render low pressure drop and optimum performance
- Integral cold point separator provides optimal moisture separation
- Electronic No Loss drain saves energy and ensures positive condensate removal
- Cold surface insulation improves thermal efficiency
- Attractive, heavy gauge, powder coated cabinets protect internal components
- UL and cUL standard on all units

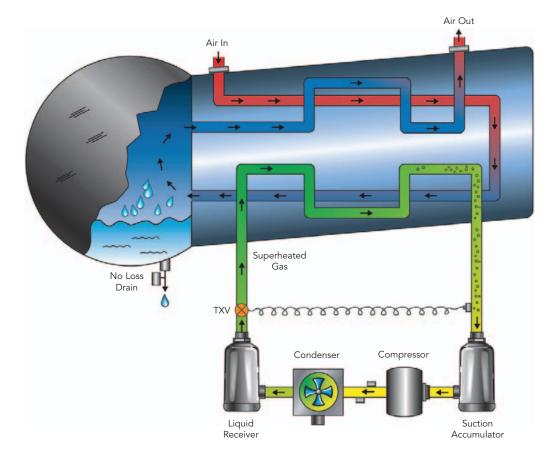

CYCLING AND NON-CYCLING DRYERS 10 TO 4000 CFM

Quincy refrigerated air dryers are manufactured to exact standards in state-of-the-art production facilities, featuring high capacity, balanced component selection and consistent output. This, combined with a clean, simple design, creates an efficient, reliable and environmentally friendly non cycling refrigerated air dryer.

Quincy refrigerated air dryers allow plant equipment to run efficiently, and processes more reliably, by providing the cleanest compressed air utility possible. Payback starts immediately upon start up.


To customize the total air system for optimum efficiency, Quincy provides both Cycling and Non-Cycling refrigerated air dryers. Cycling dryers are well suited for systems with future expansion plans or fluctuating loads, whereas Non-Cycling dryers are typically best employed in systems that produce fairly constant loads. Either way, Quincy's lineup features time tested, proven and reliable compressed air dryers for demanding applications.

The above chart represents the energy saving potential of a cycling dryer vs. a non-cycling dryer at various load conditions.


The system reduces the temperature of the compressed air to appox. +39°F forcing entertained moisture to condense. The mixture of condensed liquids and cold air then flow into the cold point moisture separator where the liquids are col-

lected and removed by an electronic No Loss condensate drain. The No Loss drain ensure maximum moisture removal while saving energy.

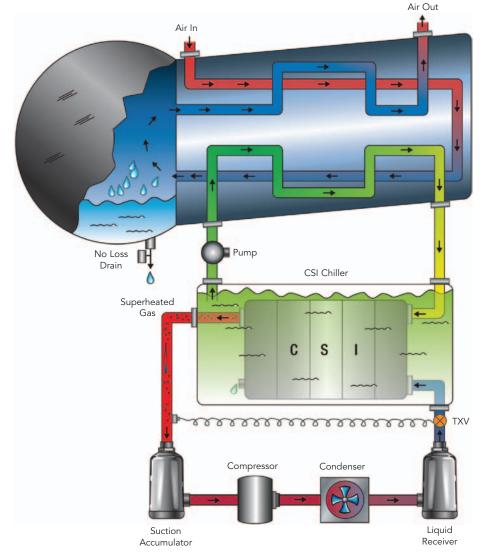
Once liquids have been removed, the cold dry compressed air returns through the cold side of the first stage heat exchanger where it is reheated by the warm incoming air. Pipe sweating is avoided and air volume is increased by reheating.

The compressed air is now considered treated and ready for delivery to downstream products.

Non-Cycling Flow Schematic

QPCD — CYCLING DRYER OPERATION

Quincy Cycling Dryers save energy by turning the refrigeration system on and off in response to demand. A three-stage cold air module combined with our exclusive Cold Storage Integration (CSI) chiller provides more cold storage and higher energy savings than conventional cycling designs. Thermostatic controls provide tight dew point control and prevents freeze ups.


Contaminated compressed air flows into the 3-in-1 cold air module first stage exchanger section where it is pre-cooled by the cold air returning from the chilled mass section.

The pre-cooled compressed air is then directed into the second stage of the cold air module where the air temperature is lowered to approximately +35°F by the chilled mass flowing from the CSI chiller assembly.

The compressed air flows into the integral moisture separator where the condensed liquids are removed by centrifugal action and sent to the sump for disposal through the microprocessor controlled drain.

When the microprocessor reads the low set point from the thermostat, it turns the refrigeration compressor off. When the compressor is off, no energy is used. The totally immersed chiller, stainless steel heat exchanger eliminates radiant heat loss while preventing dew point spikes. The Cold Air Module works in combination with the CSI chiller to optimize efficiency and reduce power consumption by as much as 6%.

Cycling Flow Schematic

CONTROLS

Quincy non-cycling dryers 10 to 2500 cfm and a general purpose alarm light wired to the standard controls include: a refrigerant analyzer gauge, electronic no-air-loss drain, on/off switch

compressor overload circuit.

Non-cycling Control Panel 10-2500 cfm

- Run Light
- Alarm Indicator Light
- Analyzer Gauge

- System Schematic
- Stop / Start Switch with Lock Out

Cycling Microprocessor Control Panel 250-4000 cfm

- Inlet Air Temperature
- Chilled Media Temperature
- Ambient Temperature
- Fahrenheit or Centigrade
- Alarm Indicator
- Compressor Running Indicator
- Service Due Indicator

REFRIGERANT

All Quincy Compressor refrigerated air dryers use R-134a, R-404a or R-410a refrigerants, which are recognized by the Environmental

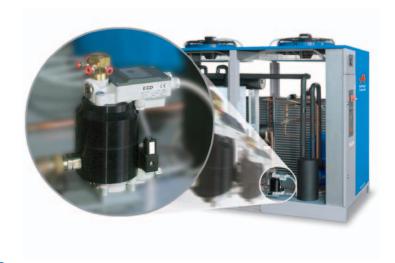
advantages:

- No CFC's or HCFC's
- **EPA/SNAP** Compliant
- Zero Ozone Depletion Potential (ODP)

Protection Agency (EPA) as being non-ozone

depleting, and offer the following environmental

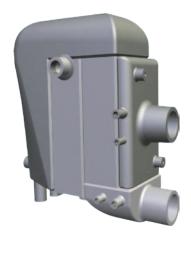
- Qualifies for one LEED point
- Higher performance/efficiency potential



ADDITIONAL DESIGN ELEMENTS

CONDENSATE REMOVAL SYSTEMS

All Standard Quincy Non Cycling dryers are equipped with high efficiency, environmentally friendly No Loss electronic drains. Cycling dryers are equipped with microprocessor controlled electronic drains.


HEAT EXCHANGERS & MOISTURE SEPARATORS

Quincy's premium heat exchanger design, materials, and construction ensure maximum reliability and efficiency. To ensure the removal of all condensed liquids and to minimize

pressure drop, Quincy high efficiency heat exchangers are paired with either our unique Five Step Centrifugal Moisture Separator or with an integral moisture separator.

- Application-specific design for low pressure drop and optimum performance
- Cold Air Module (QPNC 75 2500 & QPCD 250 1200)
- Brazed Plate (QPNC 10 50)
- Integrated Moisture Separator (QPNC 75 2500 & QPCD 250 1200)
- 10-Year Heat Exchanger Warranty

QPCD — SPECIFICATIONS & ENGINEERING DATA

Cycling			— Standard Elect	— Standard Electrics — —		essure —	— Dimensions — Approximate			Approximate	
Model	cfm @ 100 psig	m³/hr 7 bar	Volts/Phase Hertz	Full Load kW	Max psig	Nominal ΔP	L In.	W In.	H In.	Shipping Wt. lb.	Connections In/Out
QPCD 250*	250	425	208/230-3-60 or 460-3-60	2.8	200	3.6	40	32	46	825	1.5" NPT (F)
QPCD 325*	325	552	208/230-3-60 or 460-3-60	2.8	200	3.6	40	32	46	850	1.5" NPT (F)
QPCD 400*	400	680	208/230-3-60 or 460-3-60	3.9	200	4.3	40	32	46	860	2" NPT (F)
QPCD 500*	500	850	208/230-3-60 or 460-3-60	4.6	200	4.3	40	32	46	870	2" NPT (F)
QPCD 600*	600	1020	208/230-3-60 or 460-3-60	5.1	200	4.3	40	32	46	910	2" NPT (F)
QPCD 800*	800	1359	208/230-3-60 or 460-3-60	6.2	150	3.6	54	32	46	700	3" NPT (F)
QPCD 1000 ³	1000	1699	208/230-3-60 or 460-3-60	7.6	150	4.3	54	32	46	730	3" NPT (F)
QPCD 1200 ³	1200	2039	460-3-60	9.6	150	5.0	54	32	46	765	3" NPT (F)
QPCD 1500 ²	1500	2549	460-3-60	11.4	150	4.3	72	42	61	1450	4" Flange
QPCD 1700 ³	1700	2889	460-3-60	14.2	150	4.3	72	42	61	1500	4" Flange
QPCD 2000 ³	* 2000	3398	460/3/60	15.9	150	3.6	72	42	61	1650	4" Flange
QPCD 2500 ³	2500	4248	460/3/60	22.8	150	3.6	106	92	74	3100	6" Flange
QPCD 3200 ²	* 3200	5437	460/3/60	28.4	150	4.5	106	92	74	3200	6" Flange
QPCD 4000 ²	* 4000	6796	460/3/60	31.8	150	4.5	106	92	74	3500	6" Flange

^{*} Water cooled available. Consult factory for data and availability.

Notes: Capacity in accordance with recommended NFPA standards and CAGI standard ADF 100. Ratings based on 100°F inlet temperature, 100 psig inlet pressure and 100°F max ambient.

kW inputs are shown for air cooled models including fan motors.

CORRECTION FACTORS

Inle	et Air Pre	essure	Correct	tion					
Α	psi	60	80	100	120	140	150	180	200
А	Factor	0.83	0.94	1	1.03	1.05	1.08	1.09	1.11

Inle	et Air Ter	npera	ture Co	rrectio	n	
В	Temp.°F	80	90	100	110	120
	Factor	1.5	1.21	1	0.84	0.69

Am	ıbient Aiı	Temp	eratur	e Corre	ction
С	Temp.°F Factor	80 1.15	90 1.07	100	110 0.91

De	w Point (Correction	
D	Temp.°F	37–39°F	45–50°F
	Factor	1	1.2

Example One: Conditions Requirement								
Capacity Inlet Pressure	745 cfm							
Inlet Préssure	120 psig							
Inlet Air Temp.	90°F							
Ambient Temp.	100°F							
Dew Point '	39°F							

Example Two: Co	
Inlet Pressure	120 psig
Inlet Air Temp.	110°F
Ambient Temp.	90°F
Dew Point '	39°F

Example One: Ca	lculatio	ns				
Dryer Required	= _	cfm required (A) x (B) x (C) x (D)				
	= (745 1.03) x (1.21) x (1) x (1)				
	= 5	98 cfm dryer required				
Select QPCD 600 for this application						

Example Two: Calculations								
Corrected Capacity	=	Std. Capacity x (A) x (B) x (C) x (D)						
	=	1000 x (1.03) x (.84) x (1.07) x (1)						
	=	926 cfm						

QPNC — SPECIFICATIONS & ENGINEERING DATA

Non-Cycling			—— Standard E	— Pressure — — Dimensions —					Approximate			
Model	cfm @ 100 psig	m³/hr 7 bar	Volts/Phase Hertz	Full Load kW	Max psig	Nominal ΔP	L In.	W In.	H In.	Shipping Wt. lb.	Connections In/Out	Refrigerant Gas
QPNC 10	10	17	115/1/60	0.2	230	1.5	22	16	25	57	0.5" NPT (M)	R-134a
QPNC 15	15	25	115/1/60	0.2	230	2.2	22	16	25	59	0.5" NPT (M)	R-134a
QPNC 25	25	42	115/1/60	0.3	230	2.9	22	16	25	70	0.5" NPT (M)	R-134a
QPNC 35	35	59	115/1/60	0.3	230	2.9	22	16	25	75	0.5" NPT (M)	R-134a
QPNC 50	50	85	115/1/60	0.4	230	2.9	23	17	37	75	0.5" NPT (M)	R-134a
QPNC 75	75	127	115/1/60	0.7	230	2.9	26	20	38	112	1" NPT (F)	R-404a
QPNC 100	100	170	115/1/60	0.9	200	2.2	26	20	38	134	1.5" NPT (F)	R-404a
QPNC 125	125	212	115/1/60	1.0	200	2.9	27	15	42	150	1.5" NPT (F)	R-404a
QPNC 150	150	255	208-230/1/60	1.5	200	1.5	27	15	42	198	1.5" NPT (F)	R-404a
QPNC 200	200	340	208-230/1/60	1.6	200	2.9	27	15	42	198	1.5" NPT (F)	R-404a
QPNC 250	250	425	460/3/60	1.9	200	3.6	29	35	40	198	1.5" NPT (F)	R-404a
QPNC 300	300	510	460/3/60	2.3	188	3.6	29	35	40	282	2" NPT (F)	R-410a
QPNC 360	360	612	460/3/60	2.6	188	4.3	29	35	40	322	2" NPT (F)	R-410a
QPNC 500	500	850	460/3/60	3.2	188	4.3	29	35	40	348	2" NPT (F)	R-410a
QPNC 600	600	1020	460/3/60	4.3	188	4.3	40	43	61	364	2" NPT (F)	R-410a
QPNC 750	750	1275	460/3/60	5.4	188	3.6	40	43	61	717	3" NPT (F)	R-404a
QPNC 1000	1000	1700	460/3/60	5.8	188	4.3	40	43	61	739	3" NPT (F)	R-404a
QPNC 1250	1500	2125	460/3/60	7.3	188	5.0	40	83	61	772	3" NPT (F)	R-404a
QPNC 1600	1600	2720	460/3/60	9.6	188	4.3	40	83	61	1213	6" Flange	R-404a
QPNC 1800	1800	3060	460/3/60	9.6	188	4.3	40	83	61	1235	6" Flange	R-404a
QPNC 2200	2200	3740	460/3/60	12.5	188	3.6	40	83	61	1323	6" Flange	R-404a
QPNC 2500	2500	4250	460/3/60	12.5	188	3.6	40	83	61	1323	6" Flange	R-404a
QPNC 3200*	3200	5440	460/3/60	15.8	150	4.5	113	60	99	4200	6" Flange	R-404a
QPNC 4000*	4000	6800	460/3/60	18.2	150	4.5	150	80	117	6500	8" Flange	R-404a

^{*} Water cooled available. Consult factory for data and availability.

Notes: Capacity in accordance with recommended NFPA standards and CAGI standard ADF 100. Ratings based on 100°F inlet temperature, 100 psig inlet pressure and 100°F max ambient.

kW inputs are shown for air cooled models including fan motors.

CORRECTION FACTORS

lr	let Air Pressure Correction								
	Temp.°F	60	80	100	120	140	150	180	200
Α	QPNC 10 - 250 Factor	0.79	0.93	1	1.03	1.07	1.09	1.12	1.14
	QPNC 325 - 4000 Factor	0.83	0.94	1	1.03	1.05	1.08	1.09	1.11

Inle	et Air Temperature Correc	tion			
	Temp.°F	80	100	110	120
В	QPNC 10 - 250 Factor	1.05	1	0.87	0.67
_	QPNC 325 - 4000 Factor	1.05	1	0.84	0.69

Ambient Air Temperature Correction									
	Temp.°F	80	90	100	110				
C	QPNC 10 - 250 Factor	1.12	1.03	1	0.92				
	OPNC 325 - 4000 Factor	1 15	1.07	1	0.91				

De	w Point Correction		
	Temp.°F	37-39°F	45-50°F
D	QPNC 10 - 250 Factor	1	1.12
	QPNC 325 - 4000 Factor	1	1.2

iditions
480 cfm
120 psig 110°F
110°F
100°F
39°F

Example Two: Conditions QPNC 500 Corrected Flow for:								
Inlet Pressure	120 psig							
Inlet Air Temp.								
Inlet Air Temp. Ambient Temp.	90°F							
Dew Point	39°F							

Example One: Calculations						
Dryer Required	= <u>cfm required</u> (A) x (B) x (C) x (D)					
	$= \frac{480}{(1.03) \times (.84) \times (1) \times (1)}$					
	= 555 cfm dryer required					
Select QPNC 600 for this application						

Example Two: Calc	ulat	iions
Corrected Capacity	=	Std. Capacity x (A) x (B) x (C) x (D)
	=	500 x (1.03) x (.84) x (1.07) x (1)
	=	463 cfm

QPNC-25 Non-Cycling Dryer

QPNC & QPCD AVAILABLE EQUIPMENT

			Non-Cy	clina_1	Nodels (S	CFM)		Cycling Mod	dels (SCFM)
Available Equipment	10–50	75–125	150-200	250	300-600	750-2500	3200-4000	250–1200	1500–4000
Controls:								1	
Microprocessor	n/a	n/a	n/a	n/a	n/a	S	S	S	S
Hot Gas Bypass Valve	S	S	S	S	S	S	S	n/a	n/a
Thermostatic Expansion Device	S	S	S	S	S	S	S	S	S
High/Low Refrigerant Shutdown	n/a	n/a	n/a	n/a	n/a	S	S	S	S
Refrig. Dual Pressure	n/a	n/a	n/a	n/a	n/a	S	S	S	S
Cycling Thermostat	n/a	n/a	n/a	n/a	n/a	n/a	n/a	S	S
Heat Exchangers: Three-stage Modular Heat									
Exchanger w/Integral Cold					_	•		,	,
Point Separation	S	S	S	S	S	S	S	n/a	n/a
Three-Stage (Chiller) System	n/a	n/a	n/a	n/a	n/a	n/a	n/a	S	S
Separators & Drains:									
High Efficiency Moisture Separato	r S	S	S	S	S	S	S	S	S
Electronic No Loss Drain	S	S	S	S	S	S	Ö	Ö	Ö
Electronic Timer Drain	n/a	n/a	n/a	n/a	n/a	n/a	S	S	S
Electronic Timer Drain	II/ d	II/ d	II/d	II/d	II/ d	II/a	3	3	3
Indicator lights:									
Power On	S	S	S	S	S	S	S	S	S
°F or °C Mode	n/a	n/a	n/a	n/a	n/a	n/a	S	S	S
Alarm	S	S	S	S	S	S	S	S	S
Drain Light	n/a	n/a	n/a	n/a	n/a	S	S	S	S
Compressor Running	n/a	n/a	n/a	n/a	n/a	n/a	S	S	S
Service Due	n/a	n/a	n/a	n/a	n/a	n/a	S	S	S
Service Duc	11/ 4	11/4	11/ 4	11/ 4	11/4	11/ 4	3	3	3
Instrumentation:									
Air In Temperature	n/a	n/a	n/a	n/a	n/a	n/a	S	S	S
Air Out Temperature	n/a	n/a	n/a	n/a	n/a	n/a	GP	GP	GP
Air In Pressure	n/a	n/a	n/a	n/a	n/a	n/a	GP	GP	GP
Air Out Pressure	n/a	n/a	n/a	n/a	n/a	n/a	GP	GP	GP
Ambient/Cooling Water Temp	n/a	n/a	n/a	n/a	n/a	n/a	S	S	S
	n/a	n/a	n/a	n/a	n/a	n/a	S	n/a	n/a
Refrigerant Suction Temperature									
Chilled Media Temperature	n/a	n/a	n/a	n/a	n/a	n/a	n/a	S	S
Refrigeration Suction Pressure	S	S	S	S	S	S	S	S	S
Refrigeration Discharge Pressure	n/a	n/a	n/a	n/a	n/a	n/a	GP	GP	GP
6' Single Phase Power Cord	S	S	S	S	S	n/a	n/a	n/a	n/a
NEMA 1	S	S	S	S	S	S	S	S	S
NEMA 4	n/a	n/a	n/a	n/a	n/a	n/a	Ö	Ö	Ö
a !!									
Cooling:	S	S	S	S	S	S	S*	S	S*
	-	-	-	-	-	-	-	0	0**
Water	n/a	n/a	n/a	n/a	n/a	n/a	n/a	U	0^^
Enclosures:									
Powder Coated Cabinet	S	S	S	S	S	S	n/a	S	n/a
Filters:									
Particulate	0	0	0	0	0	0	0	0	0
Coalescer	0	0	0	0	0	0	0	0	0
Mist Eliminator	0	0	0	0	0	0	0	0	0
	()	()							

S = Standard O = Optional

GP = Gauge Package Option n/a = Not Applicable

^{*} Optional on 4000 scfm model ** Standard on 4000 scfm model

QPHT — HIGH TEMPERATURE REFRIGERATED DRYER

- Accepts 180°F Inlet Temperature
- Space-Saving 3-in-1 Design
- Eliminates Water, Oil and Dirt from Air Systems
- Prevents Damage to Pneumatic Tools and Cylinders, Adding to Their Lifetime Use
- Fewer Finished Product Defects
- Prevents "Fisheye" Paint Splotches
- Reduces Operational Downtime
- Increase Profitability and Productivity
- Eliminates Air Line Purging

SPACE SAVING REFRIGERATED DRYER

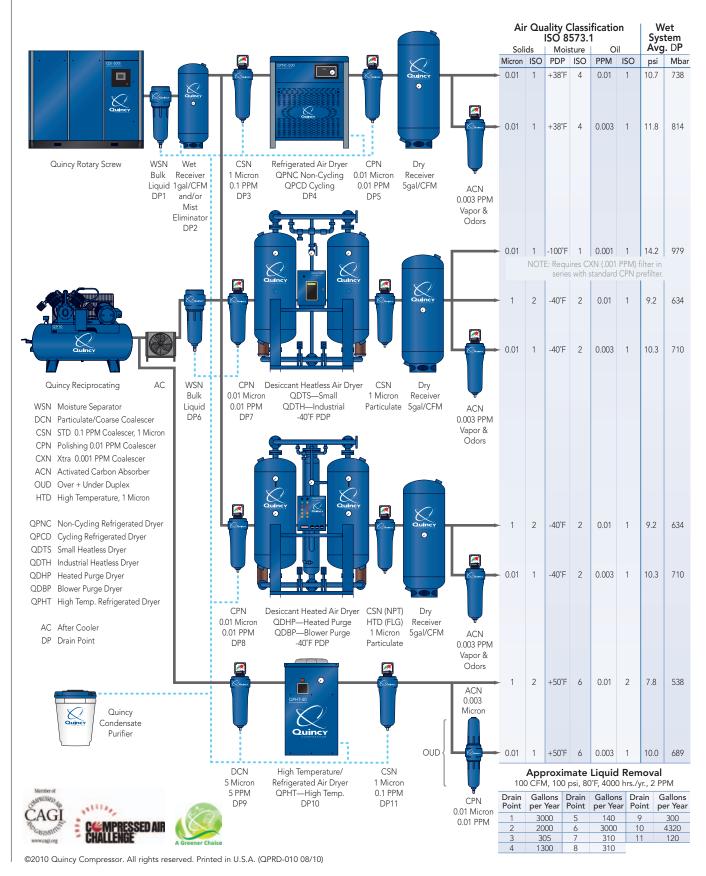
QPHT Series Total Air System High Temperature Dryers integrate five different components that perform separate functions. An air-cooled aftercooler, refrigerated dryer, moisture separator, electronic adjustable drain valve, and coalescer work in harmony to ensure absolutely clean air that's oil and dirt free.

Heat exchangers with a smooth wall (primary) surface provide maximum heat transfer efficiency. The automatic drain has a solid state programmable timer and a manual override (particle strainer included). The virtually maintenance-free unit ships with oil, a full refrigerant charge and a three-prong plug for easy installation.

QPHT — SPECIFICATIONS & ENGINEERING DATA

High Temperature				Heat			Ambient	Di	mensio	ns			
Model		Use With Compressor	Stnd Electrics	Ref hp	Exchanger Material		Refrigerant						Connections In.
QPHT 25	25	5 hp	115/1/60	1/4	Copper	175	R-134A	Stnd	171/2	18 ³ / ₄	173/4	85	1/2 NPT
QPHT 50	50	10 hp	115/1/60	1/4	Copper				28	20	30	128	1/2 NPT
QPHT 75	75	15 hp	115/1/60	1/2	St. Steel/Copper	175	R-134A	Opt	28	18	40	183	1 NPT
QPHT 100	0 100				St. Steel/Copper							194	1 NPT
QPHT 125	5 125				St. Steel/Copper						40	200	1 NPT

Notes: Instrumentation includes; On/off switch, power on light, hi-temp light, refrigerant suction pressure gauge, drain test button, drain adjustment knobs. Coalescing filter is supplied for all models. Automatic drain is electronic, timer operated and panel mounted. 208-230/1/60 or 100/1/50 electrics are available as no charge options.


Operating Conditions							
QPHT Models	Maximum Inlet Pressure	Maximum Inlet Air Temp.	Minimum Inlet Air Temp.	Dew- point Temp.	Maximum Ambient Temp.	Minimum Ambient Temp.	
25-125	175 psig	180°F	40°F	50°F ± 2°F	100°F	40°F	

Inlet Flow	SCFM 50°F PDP	40°F PDP
QPHT 25	25	20
QPHT 75	75	60
OPHT 125	125	100

SCFM flow is rated at 180°F max. inlet, 175 psig operating, 200 psig max. and 100°F ambient.

COMPRESSED AIR SYSTEMS BEST PRACTICE

